Key Stage 5 - YEAR I3 A level Maths
Curriculum Map for Students

|  | Autumn I | Autumn 2 | Spring I | Spring 2 | Summer I |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Topic Overview | Functions and Graphs. Binomial Expansion Radian Measure. <br> Reciprocal Trig Functions. <br> Trig equations and identities. <br> Modelling using Trigonometry | Modelling using <br> Trigonometry <br> Parametric Equations <br> Numerical Methods <br> Further Differentiation | Integration Vectors <br> Statistics Regression, Correlation. <br> Mechanics Moments Forces + Friction | Conditional Probability <br> Statistics Normal <br> Distribution <br> Projectiles <br> Applications of Forces | Statistics Normal <br> Distribution <br> Further Kinematics <br> Variable acceleration |
| Focus | Modulus Function, Functions and Mappings. <br> Composite and Inverse functions. <br> Transformations of graphs. <br> Binomial Expansion for fractional and negative powers of " $n$ ". Approximations using Partial Fractions <br> Radian Measure. Arc length and Sector Area, segments etc. <br> Solving trig equations using Radians. <br> Reciprocal Trig Functions. Solving equations and proving identities. Simplifying Expressions. | Inverse Trig Functions Addition/Double Angle formulae and their applications. The form Acosx+ Bsinx. Modelling. Sketching curves defined parametrically. <br> Use of Trig variables. Point of intersection. <br> Locating roots, process of finding iteration formulae. Using Iteration. Staircase and spiral diagrams. Newton Raphson Method. <br> Differentiating Sin, cos, In and "e". Applying Chain rule, product Rule and quotient rule. Using trig identities and diff other trig functions. Parametric + Implicit Differentiation, equations of tangents and normals. <br> $2^{\text {nd }}$ derivates. Connected rates of Change | Integration of standard functions. Integration using trig identities. Integration by inspection (Reverse Chain Rule) Integration by Parts/ Substitution. Integration using Partial Fractions. Finding Areas by integration including parametric integration. <br> The trapezium rule. <br> Solving diff equations by separating variables. Modelling by forming and solving Diff Eq. 3D and relative position. <br> Solving geometrical problems. <br> Models, correlation, Hypothesis Testing. Conditional Probability laws and Venn Diagrams <br> Moments, resultant moments, Equilibrium, Centres of Mass and Tilting | Conditional Probability laws and Venn Diagrams Finding Probabilities using Normal Curve. <br> Standardising to the $Z$ value. Inverse normal distribution applications. Finding mean and variance. Normal approx. to Binomial Distribution. Hypothesis Testing using Normal Distribution <br> Horizontal Projection. Vertical and horizontal components. Angle of projection. Projection Formulae. Static Particles and static modelling. <br> Friction. Rigid bodies Dynamics and inclined planes. Connected Particles. | Hypothesis Testing using Normal Distribution <br> Vector in Kinematics <br> Vector methods applied to projectiles. <br> Variable acceleration in one dimension and two dimensions using vectors. Differentiation and Integration applied to vectors. <br> Revision and Past papers. |
| Assessment | Assessment Pure bk 2 ChI, 2, 3, 4, 5, 6, 7 | Year 13 Mock exams | Assessment Pure Bk 2 ChIO, II, 12, 13 | Assessment Applied bk2 Ch I, 2, 4, 5, 6, 7 | A level Exams |

